US009342326B2

a2z United States Patent (10) Patent No.: US 9,342,326 B2
Ramarathinam et al. (45) Date of Patent: May 17, 2016
(54) ALLOCATING IDENTIFIED INTERMEDIARY 8,015,563 B2 . 9/2011 Araujo et al.
TASKS FOR REQUESTING VIRTUAL g gg;gg gg . gggg %{iglbeth etal .o ;?g%g
MACHINES WITHIN A TRUST SPHERE ON A 8612971 BI* 12/2013 Fitzgerald etal. 718/1
PROCESSING GOAL (Continued)
(75) Inventors: Aravind Ramarathinam, Issaquah, WA
(US); Srivatsan Parthasarathy, Seattle, FOREIGN PATENT DOCUMENTS
WA (US) WO WO2011081935 A2 7/2011
(73) Assignee: Microsoft Technology Licensing, LL.C, OTHER PUBLICATIONS
Redmond, WA (US) Tripathi, et al., “Crossbow: From Hardware Virtualized NICs to
(*) Notice: Subject to any disclaimer, the term of this V{Itual{zed Networks”, in Proceedings ofthc.e 1st ACM Workshop on
atent is extended or adjusted under 35 Virtualized Infrastructure Systems and Architectures, Aug. 17,2011,
UsC. 154(b) by 294 days. pp. 33-61.
(Continued)
(21) Appl. No.: 13/527,420
. Primary Examiner — Abdullah Al Kawsar
(22) Filed: Jun. 19, 2012 Assistant Examiner — Jorge A Chu Joy-Davila
. s 74) Attorney, Agent, or Firm — Henry Gabryjelski; Dou
65 Prior Publication Dat (ney, Agent, nry Gabryjelski; Doug
(65) rior Fublication Data Barker; Micky Minhas
US 2013/0339950 Al Dec. 19, 2013
57 ABSTRACT
(1) Int. C1. A system in which a virtual machine manager determines
GO6F 9/445 (2006.01) ks th b f d irtual e .
GO6F 9455 (2006.01) tasks that are to ¢ performed on virtual mac mnes executing
GOGF 9/50 200 6. 01 on a host computing system. The host computing system
(0D) further executes an intermediary virtual machine task man-
(52) US.CL) agement module that receives virtual machine tasks from the
CPC ... GOG6F 9/44505 (2013.01), GOG6F 9/45533 virtual machine manager. Upon request from the virtual
. . (2_013'01)’ GO6F 9/5077 (2013.01) machines, the intermediary module identifies the tasks that
(58) Field of Classification Search are to be performed on the requesting virtual machine to the
None lication file : i requesting virtual machine. The virtual machines may per-
See application file for complete search history. haps also initiate the performance of such identified tasks.
(56) Ref Cited Since the virtual machine itself is initiating contact with the
eferences Cite

U.S. PATENT DOCUMENTS

6,041,137 A
6,223,202 B1*

3/2000 Van Kleeck
4/2001 Bayehccoccoovvevcnnn 718/102

intermediary module, and is not interacting directly with the
virtual machine manager, the virtual machine manager need
not be in the same sphere of trust as the virtual machine.

22 Claims, 4 Drawing Sheets

Manager
201 212

221

Intermediary

Host 210

<
=
@

N
Y

2
=
N

US 9,342,326 B2
Page 2

(56)

2004/0221285
2008/0320583
2009/0260007
2009/0282404
2010/0070725
2010/0269109
2011/0022694

References Cited

U.S. PATENT DOCUMENTS

Al*
Al
Al
Al*
Al
Al*
Al*

11/2004
12/2008
10/2009
11/2009

3/2010
10/2010

1/2011

Donovan etal. 718/1
Sharma et al.

Beaty et al.

Khandekar et al. 718/1
Prahlad et al.

Cartalesccccoecvvvvvrnnnnn 718/1
Dalaletal.coen. 709/222

2011/0069710 Al
2011/0131330 Al
2011/0197190 Al
2012/0096271 Al*

3/2011
6/2011
8/2011
4/2012

Naven et al.

Beaty et al.

Hattori et al.

Ramarathinam et al. 713/172

OTHER PUBLICATIONS

“Office Action Issued in European Patent Application No. 13732679.
97, Mailed Date: Jan. 18, 2016, 5 pages.

* cited by examiner

US 9,342,326 B2

Sheet 1 of 4

May 17, 2016

U.S. Patent

J 84nbi4

9[eOA-UON

80F
sjeuuey)
UONBIIUNWIWIOY

S[leIoA

vk
Alows|y

00}
wajsAg Bunndwon

20F

(s)Jossad01d

cH
feidsig

U.S. Patent May 17, 2016 Sheet 2 of 4 US 9,342,326 B2

Manager Intermediary
201 212

221 222

Figure 2

U.S. Patent

May 17, 2016 Sheet 3 of 4

300
Receive Task(s) 301
Queue Task(s) 302
Figure 3
400

Receive Request For Task(s) 401

Search For Task(s) 402

Provide Task(s) To VM 403

Figure 4

US 9,342,326 B2

U.S. Patent May 17, 2016 Sheet 4 of 4 US 9,342,326 B2

500
:lm 511A
Virtual Switch
510 :|'v 511B
501'\{ :|'v 511C
}\, 511D
|~ 511E
521
Extensions 1
520 222
o— 523
[]

Figure 5

US 9,342,326 B2

1
ALLOCATING IDENTIFIED INTERMEDIARY
TASKS FOR REQUESTING VIRTUAL
MACHINES WITHIN A TRUST SPHERE ON A
PROCESSING GOAL

BACKGROUND

The virtualization of computing systems has enabled for
flexible and convenient setup and maintenance of computing
systems. A computing system is virtualized by having a vir-
tual machine operate remotely from the client computing
system that the virtual machine serves. The virtual machine
emulates the logic of a fully operational computing system
including the operating system, its various applications, and
corresponding settings, and interfaces with the user via a
remotely located client computing system. For instance, the
virtual machine receives client input from the remote client,
and provides resulting desktop image information back to the
client. The client does not operate the corresponding operat-
ing system, but rather just receives the user input, and renders
the desktop using the resulting desktop image provided by the
virtual machine.

The virtual machine operates on a host computing system
(also referred to inthe art as a “host” or “node” in the technical
art of virtualization) typically with many other virtual
machines. The hardware used by the virtual machine is also
often on the host, including processing resources, storage,
network, memory, and so forth. Each virtual machine main-
tains the proper emulation of an isolated computing system
by interfacing with the available hardware through a hyper-
visor.

BRIEF SUMMARY

At least one embodiment described herein relates to a
system in which a virtual machine manager determines tasks
that are to be performed on virtual machines executing on a
host computing system. The host computing system further
executes an intermediary virtual machine task management
module that receives virtual machine tasks from the virtual
machine manager. Upon request from the virtual machines,
the intermediary module identifies the tasks that are to be
performed on the requesting virtual machine to the requesting
virtual machine. The virtual machines may perhaps also ini-
tiate the performance of such identified tasks. Since the vir-
tual machine itself is initiating contact with the intermediary
module, and is not interacting directly with the virtual
machine manager, the virtual machine manager need not be in
the same sphere of trust as the virtual machine.

As an example only, such virtual machines may, when
initially spun up from a master image, be configured to ask
what additional customizations are to be performed as part of
the provisioning of the virtual machine. However, tasks may
be for any other purpose such as the installation of updates or
patches, the enabling or disabling of features (such as oper-
ating system features or configuration settings), the updating
of policy, the determination of virtual machine compliance,
the performance of licensing tasks, and so forth.

This Summary is not intended to identity key features or
essential features of the claimed subject matter, nor is it
intended to be used as an aid in determining the scope of the
claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features can be obtained, a more

10

15

20

25

30

35

40

45

50

55

60

65

2

particular description of various embodiments will be ren-
dered by reference to the appended drawings. Understanding
that these drawings depict only sample embodiments and are
not therefore to be considered to be limiting of the scope of
the invention, the embodiments will be described and
explained with additional specificity and detail through the
use of the accompanying drawings in which:

FIG. 1 illustrates a computing system in which some
embodiments described herein may be employed;

FIG. 2 illustrates an environment in which a virtual
machine manager may cause tasks to be performed on virtual
machines.

FIG. 3 illustrates a flowchart of a method for communica-
tion between the virtual machine manager of FIG. 2 and the
intermediary virtual machine task management module of
FIG. 2;

FIG. 4 illustrates a flowchart of a method for communica-
tion between the intermediary virtual machine task manage-
ment module of FIG. 2 and the virtual machines of FIG. 2; and

FIG. 5 illustrates an embodiment of the intermediary vir-
tual machine task management module of FIG. 2 in which a
virtual switch is used with extension to implement the logic of
FIGS. 3 and 4.

DETAILED DESCRIPTION

In accordance with embodiments described herein, a sys-
tem in which a virtual machine manager determines tasks that
are to be performed on virtual machines executing on a host
computing system. The host computing system further
executes an intermediary virtual machine task management
module that receives virtual machine tasks from the virtual
machine manager. Upon request from the virtual machines,
the intermediary module identifies the tasks that are to be
performed on the requesting virtual machine to the requesting
virtual machine. The virtual machines may perhaps also ini-
tiate the performance of such identified tasks. Since the vir-
tual machine itself is initiating contact with the intermediary
module, and is not interacting directly with the virtual
machine manager, the virtual machine manager need not be in
the same sphere of trust as the virtual machine.

First, some introductory discussion regarding computing
systems will be described with respect to FIG. 1. Then,
embodiments of the environment, structure, and operation of
the intermediary virtual machine task management module
will be described with respect to subsequent figures.

Computing systems are now increasingly taking a wide
variety of forms. Computing systems may, for example, be
handheld devices, appliances, laptop computers, desktop
computers, mainframes, distributed computing systems, or
even devices that have not conventionally been considered a
computing system. In this description and in the claims, the
term “computing system” is defined broadly as including any
device or system (or combination thereof) that includes at
least one physical and tangible processor, and a physical and
tangible memory capable of having thereon computer-ex-
ecutable instructions that may be executed by the processor.
The memory may take any form and may depend on the
nature and form of the computing system. A computing sys-
tem may be distributed over a network environment and may
include multiple constituent computing systems.

As illustrated in FIG. 1, in its most basic configuration, a
computing system 100 typically includes at least one process-
ing unit 102 and memory 104. The memory 104 may be
physical system memory, which may be volatile, non-vola-
tile, or some combination of the two. The term “memory”
may also be used herein to refer to non-volatile mass storage

US 9,342,326 B2

3

such as physical storage media. If the computing system is
distributed, the processing, memory and/or storage capability
may be distributed as well. As used herein, the term “module”
or “component” can refer to software objects or routines that
execute on the computing system. The different components,
modules, engines, and services described herein may be
implemented as objects or processes that execute on the com-
puting system (e.g., as separate threads).

In the description that follows, embodiments are described
with reference to acts that are performed by one or more
computing systems. If such acts are implemented in software,
one or more processors of the associated computing system
that performs the act direct the operation of the computing
system in response to having executed computer-executable
instructions. An example of such an operation involves the
manipulation of data. The computer-executable instructions
(and the manipulated data) may be stored in the memory 104
of the computing system 100. Computing system 100 may
also contain communication channels 108 that allow the com-
puting system 100 to communicate with other message pro-
cessors over, for example, network 110.

Embodiments described herein may comprise or utilize a
special purpose or general-purpose computer including com-
puter hardware, such as, for example, one or more processors
and system memory, as discussed in greater detail below.
Embodiments described herein also include physical and
other computer-readable media for carrying or storing com-
puter-executable instructions and/or data structures. Such
computer-readable media can be any available media that can
be accessed by a general purpose or special purpose computer
system. Computer-readable media that store computer-ex-
ecutable instructions are physical storage media. Computer-
readable media that carry computer-executable instructions
are transmission media. Thus, by way of example, and not
limitation, embodiments of the invention can comprise at
least two distinctly different kinds of computer-readable
media: computer storage media and transmission media.

Computer storage media includes RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk storage
or other magnetic storage devices, or any other medium
which can be used to store desired program code means in the
form of computer-executable instructions or data structures
and which can be accessed by a general purpose or special
purpose computer.

A “network” is defined as one or more data links that
enable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links which can be used to carry or
desired program code means in the form of computer-execut-
able instructions or data structures and which can be accessed
by a general purpose or special purpose computer. Combina-
tions of the above should also be included within the scope of
computer-readable media.

Further, upon reaching various computer system compo-
nents, program code means in the form of computer-execut-
able instructions or data structures can be transferred auto-
matically from transmission media to computer storage
media (or vice versa). For example, computer-executable
instructions or data structures received over a network or data
link can be buffered in RAM within a network interface
module (e.g., a “NIC”), and then eventually transferred to
computer system RAM and/or to less volatile computer stor-

10

15

20

25

30

35

40

45

50

55

60

65

4

age media at a computer system. Thus, it should be under-
stood that computer storage media can be included in com-
puter system components that also (or even primarily) utilize
transmission media.

Computer-executable instructions comprise, for example,
instructions and data which, when executed at a processor,
cause a general purpose computer, special purpose computer,
or special purpose processing device to perform a certain
function or group of functions. The computer executable
instructions may be, for example, binaries, intermediate for-
mat instructions such as assembly language, or even source
code. Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the
described features or acts described above. Rather, the
described features and acts are disclosed as example forms of
implementing the claims.

Those skilled in the art will appreciate that the invention
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe com-
puters, mobile telephones, PDAs, pagers, routers, switches,
and the like. The invention may also be practiced in distrib-
uted system environments where local and remote computer
systems, which are linked (either by hardwired data links,
wireless data links, or by a combination of hardwired and
wireless data links) through a network, both perform tasks. In
a distributed system environment, program modules may be
located in both local and remote memory storage devices.

FIG. 2 illustrates an environment 200 in which a virtual
machine host may cause tasks to be performed on virtual
machines. The environment 200 includes a virtual machine
host 210 that operates (or executes) multiple virtual machines
211. The virtual machine host 210 may be structured, for
example, as described above for the computing system 100 of
FIG. 1. Computing systems that execute multiple virtual
machines are often referred to in the technical art of virtual-
ization as “hosts” or “nodes”. The principles described herein
are not limited to the number of virtual machines executed on
the virtual machine host 210 as the number may change quite
often as virtual machines are spun up (i.e., begun executing)
and retired. Furthermore, while conventional virtual machine
hosts are capable of sustaining a certain number of virtual
machines, the principles described herein are not limited to a
particular number of virtual machines. Nevertheless, for illus-
trative purposes only, and only as an example, the virtual
machines 211 are illustrated as including five virtual
machines 211A through 211E, which the ellipses 211F rep-
resenting wide flexibility in this number.

The virtual machine host 210 also operates an intermediary
virtual machine task management module 212 (which will
also be referred to herein as more simply the “intermediary
module 212”). If implemented in software by the computing
system 100 of FIG. 1, the intermediary module 212 may be
created by a computing system (such as the computing sys-
tem 100 of FIG. 1) using one or more processors (such as
processor(s) 102 of FIG. 1) to execute computer-executable
instructions. Such computer-executable instructions may be
embodied on a computer-readable media (such as a computer
storage media) that comprise a computer program product.
The execution of the instructions may cause the host to instan-
tiate and/or operate the intermediary module 212 as described
herein.

US 9,342,326 B2

5

The intermediary module 212 intermediates between a
virtual machine manager 201 and the virtual machines 211.
The virtual machine manager 201 is configured to determine
tasks that are to be performed on a particular subset (e.g., one)
of the virtual machines 211 executing on the host computing
system. As described below, the virtual machine manager 201
does not directly instruct the virtual machines to perform the
tasks. Rather, the virtual machine manager 201 provides the
tasks to the intermediary 212. The virtual machines then
request tasks from the intermediary 212. Thus, the virtual
machines 211 need not be in the same sphere of trust as the
virtual machine manager 201 in order for the virtual machine
manager 201 to provide tasks to be performed by the virtual
machines. The manager 201 may not necessarily expressly
define individual tasks in the same form that they are identi-
fied to the virtual machines. For instance, perhaps the virtual
machine manager just sets a goal state for the virtual machine
(or some higher level task), and the intermediary module 212
perhaps breaks that task down into smaller components.

In FIG. 2, the ellipses 213 represents that the virtual
machine manager 201 may perform the operations described
herein for multiple virtual machine hosts by interacting with
intermediary modules on each of all or some of those hosts.
However, for clarity, the operations of the virtual machine
manager 201 will be described with respect to its interactions
with a single virtual machine host 210, though the principles
described herein may be extended to the signal virtual
machine manager 201 performing such operations with
respect to multiple virtual machine hosts.

The intermediary module 212 is communicatively coupled
to a virtual machine manager 201 as represented by bi-direc-
tional arrow 221. The intermediary module 212 is also com-
municatively coupled to the virtual machines 211 as repre-
sented by the bi-directional arrow 222.

FIG. 3 illustrates a flowchart of a method 300 for commu-
nication between the virtual machine manager 201 and the
intermediary module 212 as represented by the bi-directional
arrow 221. The method 300 may be performed upon the
intermediary module 212 receiving a task from the virtual
machine manager 201 (act 301). The task is to be performed
by a subset of the virtual machines 211. For instance, perhaps
the task is to be performed by a single one of the virtual
machines 211 (e.g., virtual machine 211A). The task may be
“received” from the virtual machine manage by receiving
information identifying the task, or by receiving information
from which it may be inferred that the task is to be performed
(such as the identification of a higher level directive or goal
state that the performance of the task would further).

The tasks is then queued (act 302). In one embodiment, the
received tasks are queued in the same queue (hereinafter
referred to as the “single queue” embodiment), regardless of
which of the virtual machines 211 the task is to be performed
by. In an alternative embodiment (hereinafter referred to as
the “multiple queue” embodiment), there is a queue for each
virtual machine. In that case, the identity of the target virtual
machine is first identified, and then the task is queued (act
302). In the case of the virtual machine manager 201 provid-
ing a higher level directive or goal state, the intermediary
module 212 may perform some processing in order to identify
the task from that directive or goal state.

The communications over channel 221 between the virtual
machine manager 201 and the intermediary module 212 are
not necessarily synchronous with the communications over
channel 222 between the intermediary module 212 and the
virtual machines 211. Accordingly, FIG. 4 illustrates a flow-
chart of a separate method 400 for communication between

20

30

35

40

45

50

55

6

the intermediary module 212 and the virtual machines as
represented by the bi-directional arrow 222.

The method 400 is initiated upon receiving a request for
one or more tasks from a virtual machine (act 401). The
intermediary module 212 then searches the queue for task(s)
that are for the requesting virtual machine (act 402). For
instance, in the single queue embodiment, the requesting
virtual machine is identified, and the queue is traversed to find
tasks that are identified as corresponding to the requesting
virtual machines. In the multiple queue embodiment, the
queue corresponding to the requesting virtual machine is
found, and then the tasks inside that queue are inherently for
the requesting virtual machine. The intermediary then iden-
tifies the tasks to the virtual machine (act 403). The virtual
machine may then perhaps perform the task. For instance, in
some cases, there may be sufficient trust inherent by the
circumstances that the virtual machine may be safe in per-
forming the task.

The communication channel 222 is illustrated as bi-direc-
tional as the virtual machines 211 communicate requests to
the intermediary module 212, and the intermediary module
212 communicates the tasks to the requesting virtual
machine. However, the virtual machines 211 may also com-
municate other data to the intermediary module 212. For
instance, the virtual machine may communicate performance
data regarding the virtual machine, telemetry data regarding
the virtual machine, the results of performing the tasks, and so
forth, to the intermediary module.

As the communication channel 221 between the interme-
diary module 212 and the virtual machine manager 201 may
optionally also be bi-directional, the intermediary module
212 may also report information back to the virtual machine
manager 201. For instance, the intermediary module 212 may
aggregate data received from the various virtual machines
211, and provide such aggregated data back to the virtual
machine manager 201. Alternatively or in addition, the inter-
mediary module 212 may also provide per virtual machine
data back to the virtual machine manager 201.

Until this point, the tasks that are to be performed on the
virtual machine have been described generally. This is
because the broader principles described herein are not lim-
ited to the particular type of task to be performed on the
virtual machine. However, for clarity, various example tasks
will now be described in further detail.

One type oftask might be a provisioning task involved with
provisioning the virtual machine in a particular beginning
goal state ready for operation. When a virtual machine is
started up, it is spun up from a particular master image, which
dictates the operating system, application set, and configura-
tion information for the virtual machine in its initial state just
after being spun up. However, by allowing further provision-
ing tasks to be performed after the virtual machine is spun up
from the master image, further customized provisioning of
the virtual machine may be provided. The master images may
be structured such that the virtual machine is configured,
upon being spun up from that master image, to inquire as to
further provisioning tasks. The virtual machine may be fur-
ther configured to perform the tasks, after perhaps performing
some authentication that the task is identified by the virtual
machine manager, rather than some other malevolent external
component.

Thus, for example, even though there may be a limited
number of master images (e.g., perhaps one for each operat-
ing system), there may be many other customizations offered
to the users of virtual machines. For instance, a user may
select not only an operating system, but may pick and choose
which applications to have on the virtual machine, which

US 9,342,326 B2

7

configurations, and what licensing and compliance is to be
associated with the virtual machine. Thus, example provi-
sioning tasks might include the installation of a particular
application or application set, the installation of a patch or
patches on the virtual machine or the performance of some
other update on the virtual machine, the enablement or dis-
ablement of a feature (such as an operating system feature), a
policy alteration or setting task in which certain policies of the
virtual machine are adjusted, a compliance check task in
which the virtual machine is verified to be in compliance with
a set of one or more standards, and/or a licensing operating in
which the virtual machine is associated with one or more
licenses.

However, tasks are not limited to provisioning tasks, as the
methods described herein may also be performed during
operation of the virtual machine, after the virtual machine has
been provisioned. Accordingly, the following tasks may also
occur after provisioning of the virtual machine: the installa-
tion of a particular application or application set, the instal-
lation of a patch or patches on the virtual machine or the
performance of some other update on the virtual machine, the
enablement or disablement of a feature, a policy alteration or
setting task in which certain policies of the virtual machine
are adjusted, a compliance check task in which the virtual
machine is verified to be in compliance with a set of one or
more standards, and/or a licensing operating in which the
virtual machine is associated with one or more licenses.

FIG. 5 illustrates an embodiment 500 of the intermediary
module 212. The intermediary module 500 uses a virtual
switch 510. A virtual switch is a component that allows com-
munication between virtual machines, and which may have
its functionality enhanced by using switch extensions. Thus,
the enhanced virtual switch enables logic to be performed on
the communications, rather than just forwarding communi-
cations between virtual machines. Here, however, the virtual
switch is used to allow for communication between the virtual
machine manager 201 and the virtual machines 211.

Virtual switches have associated ports that are used to
communicatively couple the virtual switch with external
modules. For instance, ports 511A through 511E are used for
communication to and from virtual machines 211A through
211E, respectively, and use protocols that the virtual machine
uses to communicate. In some cases, the communication
protocols for the various virtual machines may differ by vir-
tual machine. Port 501 is used to communication to and from
the virtual machine manager 201, and uses the appropriate
communication protocols that the virtual machine manager
201 recognizes.

Virtual switches allow for the use of multiple extensions
520 in which logic may be applied to such communications.
For instance, the extensions 520 are illustrated as including
extension 521 and 522, although the ellipses 523 represent
flexibility in the number of such extensions. In one embodi-
ment, the logic of FIGS. 3 and 4 may be embodied using the
extensions 520 such that the virtual switch 510 operates with
the functionality described herein as performed by the inter-
mediary module 212 of FIG. 2. Similarly, any processing
performed by the intermediary module 220 in order to iden-
tifying task(s) from higher level directives or goal states may
also be set using the extensions 520. Virtual switch extensions
allow filtering/capturing/forwarding of network packets. This
is leveraged to capture and inject packets to the target virtual
machine from the host 210. Switch extension 520 in the
virtual switch 510 intercepts the goal state request from the
target virtual machine 211, and replies to that request from the
corresponding task queue.

15

20

25

30

35

40

45

50

55

[
<

o

5

8

Referring againto FIG. 2, the channel 221 between the host
210 and the virtual machine manager 201 could also use a
different or separate management Network Interface Card
(NIC) channel that is different than the virtual switch 510 to
which the virtual machine 211 is connected to. In this
embodiment, the extensions 520 inside the virtual switch 510
is leveraged from the host-virtual machine communication
channe] 222. When the extension 520 in the virtual switch 510
intercepts the request from the virtual machine, the virtual
machine looks up the intermediary virtual machine task man-
agement mode and injects the response back to the virtual
machine with the corresponding task.

The environment 200 of FIG. 2 allows the virtual machine
manager 201 to ask that tasks be performed by the virtual
machines by submitting such tasks to the intermediary mod-
ule 212. The virtual machines 211 are in a common sphere of
trust with the intermediary module, and thus trust the inter-
mediary module sufficiently to inquire as to the tasks to be
performed. Accordingly, even through the virtual machines
may not be in the same sphere of trust as the virtual machine
manager 201, the virtual machine manager 201 may still
request that tasks be performed, and if there is sufficient trust
in the process, the virtual machines 211 may have those tasks
performed on themselves. Thus, the virtual machines 211
may maintain their security, while still having helpful tasks
performed on them.

The present invention may be embodied in other specific
forms without departing from its spirit or essential character-
istics. The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed is:
1. A computer program product comprising one or more
memories storing computer-executable instructions that are
structured such that, when executed by one or more proces-
sors of a virtual machine host computing system, the virtual
machine host computing system is configured to perform at
least the following:
establish, by an intermediary virtual machine task manage-
ment module that is executing at the virtual machine host
computing system, (i) a first network communications
channel with a virtual machine manager that executes on
a separate computer system, and (ii) one or more second
communication channels with a plurality of virtual
machines that also execute at the virtual machine host
computing system, the plurality of virtual machines
being in a common trust sphere with the intermediary
virtual machine task management module and being in a
different trust sphere than the virtual machine manager;

receive, by the intermediary virtual machine task manage-
ment module from the virtual machine manager over the
first network communications channel, a task directive
specifying a processing goal to be performed by the
plurality of virtual machines that are executing at the
virtual machine host computing system;

identify, by the intermediary virtual machine task manage-

ment module, a plurality of intermediary tasks for
accomplishing the requested processing goal, and place
the identified plurality of intermediary tasks in a queue;
and

based at least on receiving a task request from a requesting

virtual machine of the plurality of virtual machines,
perform at least the following:

US 9,342,326 B2

9

search, by the intermediary virtual machine task man-
agement module, the queue for one or more interme-
diary tasks of the plurality of intermediary tasks that
are for the requesting virtual machine, including tra-
versing the queue to find any intermediary tasks that
are identified as corresponding to the requesting vir-
tual machine; and
send the one or more intermediary tasks to the request-
ing virtual machine over the one or more second com-
munications channels for execution by the requesting
virtual machine as part of accomplishing the process-
ing goal.
2. The computer program product in accordance with claim
1, wherein the one or more intermediary tasks are to install an
application at the requesting virtual machine.
3. The computer program product in accordance with claim
1, wherein the one or more intermediary tasks are to install a
patch on the requesting virtual machine.
4. The computer program product in accordance with claim
1, wherein the one or more intermediary tasks are to perform
an update on the requesting virtual machine.
5. The computer program product in accordance with claim
1, wherein the one or more intermediary tasks are to enable or
disable a feature on the requesting virtual machine.
6. The computer program product in accordance with claim
1, wherein the one or more intermediary tasks are to affect a
policy of the requesting virtual machine.
7. The computer program product in accordance with claim
1, wherein the one or more intermediary tasks are to perform
a compliance check of the requesting virtual machine.
8. The computer program product in accordance with claim
1, wherein the one or more intermediary tasks are to perform
a licensing operation on the requesting virtual machine.
9. The computer program product in accordance with claim
1, wherein the virtual machine host computing system creates
the intermediary virtual machine task management module
by instantiating the intermediary virtual machine task man-
agement module in memory at the virtual machine host com-
puting system.
10. A computing system, comprising:
one or more hardware processors; and
one or more computer storage media comprising a hard-
ware device having stored thereon computer-executable
instructions that are structured such that, when executed
by the one or more hardware processors, the computing
system is configured to perform at least the following:
establish, by an intermediary virtual machine task man-
agement module that is executing at the computing
system, (i) a first network communications channel
with a virtual machine manager that executes on a
separate computer system, and (ii) one or more sec-
ond communication channels with a plurality of vir-
tual machines that also execute at the computing sys-
tem, the plurality of virtual machines being in a
common trust sphere with the intermediary virtual
machine task management module and being in a
different trust sphere than the virtual machine man-
ager;
receive, by the intermediary virtual machine task man-
agement module from the virtual machine manager
over the first network communications channel, a task
directive specifying a processing goal to be performed
by the plurality of virtual machines that are executing
at the virtual machine host computing system;
identify, by the intermediary virtual machine task man-
agement module, a plurality of intermediary tasks for

10

15

20

25

30

35

40

45

50

55

60

65

10

accomplishing the requested processing goal, and

place the identified plurality of intermediary tasks in a

queue; and

based at least on receiving a task request from a request-

ing virtual machine of the plurality of virtual

machines, perform at least the following:

search, by the intermediary virtual machine task man-
agement module, the queue for one or more inter-
mediary tasks of the plurality of intermediary tasks
that are for the requesting virtual machine, includ-
ing traversing the queue to find any intermediary
tasks that are identified as corresponding to the
requesting virtual machine; and

send the one or more intermediary tasks to the
requesting virtual machine over the one or more
second communications channels for execution by
the requesting virtual machine as part of accom-
plishing the processing goal.

11. The computing system in accordance with claim 10,
wherein the intermediary virtual machine task management
module comprises a virtual switch, and wherein the interme-
diary virtual machine task management module is communi-
catively coupled to one or more of the plurality of virtual
machines via one or more ports of the virtual switch.

12. The computing system in accordance with claim 11,
wherein logic of the intermediary virtual machine task man-
agement module is at least partially executed by an extension
of the virtual switch.

13. The computing system in accordance with claim 10,
wherein the intermediary virtual machine task management
module is further configured to communicate data from the
plurality of virtual machines to the virtual machine manager.

14. The computing system in accordance with claim 13,
wherein the communicated data is performance data regard-
ing the requesting virtual machine.

15. The computing system in accordance with claim 13,
wherein the communicated data is telemetry data regarding
the requesting virtual machine.

16. The computing system in accordance with claim 13,
wherein the communicated data is a result of performance of
at least one intermediary task by the virtual machine.

17. The computing system in accordance with claim 10,
wherein the one or more intermediary tasks are one or more of
installing an application at the requesting virtual machine,
installing a patch on the requesting virtual machine, perform-
ing an update on the requesting virtual machine, enabling a
feature on the requesting virtual machine, disabling a feature
on the requesting virtual machine, affecting a policy of the
requesting virtual machine, performing a compliance check
of the requesting virtual machine, or performing a licensing
operation on the requesting virtual machine.

18. The computing system in accordance with claim 10,
wherein the requesting virtual machine authenticates the one
or more intermediary tasks prior to performing the one or
more intermediary tasks.

19. The computing system in accordance with claim 10,
wherein the first network communications channel is a bi-
directional network communications channel.

20. A method, implemented by one or more processors of
a virtual machine host computing system, the method com-
prising:

establishing, by an intermediary virtual machine task man-

agement module executing at the virtual machine host
computing system, (i) a first network communications
channel with a virtual machine manager that executes on
a separate computer system, and (ii) one or more second
communications channels with a plurality of virtual

US 9,342,326 B2

11

machines that are also executing at the virtual machine
host computing system, the plurality of virtual machines
being in a common trust sphere with the intermediary
virtual machine task management module and being in a
different trust sphere than the virtual machine manager;

receiving, by the intermediary virtual machine task man-
agement module from the virtual machine manager over
the first network communications channel, a task direc-
tive specifying processing goal to be performed by the
plurality of virtual machines that are executing at the
virtual machine host computing system;

identifying, by the intermediary virtual machine task man-
agement module, a plurality of intermediary tasks for
accomplishing the requested processing goal, and place
the identified plurality of intermediary tasks in a queue;
and

based at least on receiving a task request from a requesting
virtual machine of the plurality of virtual machines over
the one or more second communications channels, per-
form at least the following:

12

searching, by the intermediary virtual machine task
management module, the queue for one or more inter-
mediary tasks of the plurality of intermediary tasks
that are for the requesting virtual machine, including
traversing the queue to find any intermediary tasks
that are identified as corresponding to the requesting
virtual machine; and

sending the one or more intermediary tasks to the
requesting virtual machine over the one or more sec-
ond communications channels for execution by the
requesting virtual machine as part of accomplishing
the processing goal.

21. The method in accordance with claim 20, wherein the
requesting virtual machine authenticates the intermediary
task prior to performing the intermediary task.

22. The method in accordance with claim 20, wherein the
first network communications channel is a bi-directional net-
work communications channel.

#* #* #* #* #*

